skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Zihao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ternary phase, Yb14CdSb11, has been synthesized by flux and polycrystalline methods. The crystal structure is determined via single-crystal X-ray diffraction, revealing that it crystallizes in the Ca14AlSb11 structure type (I41/acd space group with unit cell parameters of a = 16.5962(2) & Aring; and c = 22.1346(5) & Aring;, 90 K, Z = 8, R1 = 2.65%, and wR2 = 4.58%). The polycrystalline form of the compound is synthesized from a stoichiometric reaction of Yb4Sb3, CdSb, Yb, and Sb. The elemental composition is confirmed using scanning electron microscopy and energy-dispersive spectroscopy, and phase purity is verified by powder X-ray diffraction. Thermoelectric measurements, including resistivity, Seebeck coefficient, thermal conductivity, Hall carrier concentration, and Hall mobility, are conducted from 300 to 1273 K. Yb14CdSb11 exhibits a peak zT = 0.90 at 1200 K. Carrier concentration and Hall mobility range from 6.99 x 1020-1.01 x 1021 cm-3 and 4.45-9.35 x 10-1 cm2 V-1 s-1, respectively. This carrier concentration is lower than that reported for the Zn or Mn analogs leading to a lower thermoelectric figure of merit at high temperatures. However, with appropriate doping, this phase should also be a promising p-type candidate for high-temperature energy conversion applications. 
    more » « less
    Free, publicly-accessible full text available April 18, 2026